
Online	qr	code	scanner	with	image

http://xeltuve.com/c3?utm_term=online+qr+code+scanner+with+image




How	do	i	scan	a	qr	code	with	a	picture.	Can	i	scan	a	qr	code	from	a	photo.	Can	i	scan	a	picture	of	a	qr	code.

A	QR	code	(short	for	"Quick	Reply")	is	a	mobile-readable	barcode	that	can	store	a	website	URL,	plain	text,	phone	numbers,	email	addresses,	and	almost	any	other	alphanumeric	data.	QR	Stuff	QR	code	generator	allows	you	to	create	dynamic	or	static	QR	codes	and	upload	them	for	immediate	use.	Memory	up	to	4296	characters.	They	comply	with	the
international	standard	ISO	18004,	so	the	QR	code	is	a	QR	code	all	over	the	world	–	they	have	always	been	popular	in	Japan,	made	their	way	to	Europe	and	the	UK	a	few	years	ago	and	are	now	popular	in	North	America.	Think	"printed	hypertext	links"	and	you	will	understand.	Click	here	for	more	information	on	QR	codes,	or	visit	the	QRStuff	QR	code
blog	for	QR	code	articles,	tips	and	tricks.	QR	Code	Scanning	QR	Stuff	QR	Code	Scanner	allows	users	to	easily	and	easily	scan	QR	codes	from	their	browser	without	downloading	and	installing	QR	code	scanning	apps	or	QR	code	reading	software.	Simply	go	to	"Scan"	in	the	menu	bar	at	the	top	of	this	page	and	once	you've	granted	access	to	your
device's	camera,	you	can	scan	the	QR	code	with	your	laptop	or	mobile	device.*	Create	free	QR	codes	Our	QR	code	-Generator	is	FREE	for	everyone	who	can	use	it	without	registration	or	account	-	fully	functional,	100%	ad-free,	permanent	QR	codes	that	don't	expire.	Create	as	many	QR	codes	as	you	need	for	FREE	with	no	restrictions	for	commercial
use.	No	time	limits,	just	free	QR	codes	you	can	use	right	away.	A	dynamic	QR	code	generated	without	a	subscription	is	subject	to	50	scans	per	month	per	QR	code.	23	Free	QR	Code	Data	Types	Free	users	can	access	23	of	our	30	QR	code	data	types	(PDF,	images,	and	attendance	tracking	require	a	paid	subscription).	Websites,	YouTube,	Google	Maps?
Fur!	Everyone	gives	it	to	you,	but	our	free	users	can	create	full-featured	QR	codes	with	unlimited	validity	for	App	Store	downloads,	Dropbox	file	sharing,	SMS	and	email,	Bitcoin,	Paypal	and	more.	And	you	can	create	as	many	as	you	want.Print	or	email	your	QR	codes	Once	you've	created	your	QR	codes,	you	can	download	them	as	PNG	image	files,
print	them	as	sticker	sheets,	or	email	them	to	yourself	or	someone	else.	Just	choose	the	output	type	you	want.	100%	ad-free	QR	codes	Our	QR	codes	are	100%	ad-free,	even	for	free	users,	so	you	can	promote	your	product	without	infringing	on	someone	else's	brand.	By	the	way,	if	you	see	an	ad	after	scanning	one	of	our	QR	codes,	the	scanning	app
you're	using	puts	it	there.	Custom	Printed	Products	with	QR	Code	Create	your	own	QR	code,	then	you	and	your	code	will	be	sent	to	Zazzle's	Print	On	Demand	website	to	add	a	QR	code	to	your	T-shirt,	coffee	mug,	hat,	business	cards,	stickers	and	more.	other	-	all	ready	for	immediate	purchase,	printing	and	delivery	to	your	door.	QR	codes	are	a	proven
and	easy-to-understand	technology	that	bridges	the	gap	between	the	physical	(or	meat)	and	digital	worlds.	You	can	encode	any	text	information	in	the	QR	code,	for	example	your	website	address,	Facebook	page,	coupon,	contact	person.	After	publishing	on	paper,	any	other	physical	medium	(or	even	the	web),	people	with	a	QR	app	can	scan	your	QR
code.	As	they	scan,	they	decode	the	information	and	the	app	then	displays	a	website,	Facebook	page,	coupon	or	contact.	QRscanner.org	is	an	online	QR	scanner	and	QR	code	reader.	This	is	a	great	online	QR	code	scanning	tool.	You	can	scan	QR	code	from	any	device	like	iPhone,	iPad	and	operating	system	like	Android,	Window.	You	scan	QR	code
without	downloading	any	app	and	you	can	also	scan	QR	code	from	laptop	and	mobile	phone.	It	supports	both	desktop	and	mobile	browsers.	ScanQR	is	an	online	QR	code	scanner.	It	can	scan	QR	codes	from	images	and	through	any	webcam.	Use	it	online	without	downloading	any	app.	The	ScanQR	web	application	scans	QR	codes	locally	without
uploading	them	to	our	servers.	Your	data	and	privacy	are	our	top	priority.	Created	using	a	javascript	port	of	Cosmo	Wolfe.Google	ZXing	Library	Today's	blog	post	about	reading	barcodes	and	QR	codes	with	OpenCV	is	inspired	by	a	question	I	got	from	PyImageSearch	reader	Hewitt:	Hi	Adrian,	I	really	enjoy	the	PyImageSearch	blog.	I	look	forward	to
your	letters	every	week.	keep	doing	what	you're	doing.	I	have	a	question	for	you:	does	OpenCV	have	modules	for	reading	barcodes	or	QR	codes?	Or	do	I	need	to	use	a	completely	separate	library?	Thank	you	Adrian	Good	question	Short	answer:	no,	OpenCV	doesn't	have	special	modules	that	can	be	used	to	read	and	decode	barcodes	and	QR	codes.
However,	OpenCV	can	facilitate	the	process	of	reading	barcodes	and	QR	codes,	including	loading	an	image	from	disk,	capturing	a	new	frame	from	a	video	stream,	and	processing	it.	Once	we	receive	an	image	or	snapshot,	we	can	pass	it	to	a	specialized	Python	barcode	decoding	library	such	as	Zbar.	The	ZBar	library	then	decodes	the	barcode	or	QR
code.	OpenCV	can	go	back	and	do	further	processing	and	display	the	result.	If	this	sounds	like	a	complicated	process,	it's	actually	quite	simple.	The	ZBar	library	has	come	a	long	way	along	with	its	various	forks	and	variations.	One	set	of	ZBar	bindings,	pyzbar	in	particular,	is	my	personal	favorite.	In	today's	tutorial,	I	will	show	you	how	to	read
barcodes	and	QR	codes	using	OpenCV	and	ZBar.	And	as	an	added	bonus,	I'll	show	you	how	to	use	our	barcode	scanner	on	your	Raspberry	Pi	too!	To	learn	more	about	reading	barcodes	and	QR	codes	with	OpenCV	and	ZBar,	read	on.	Today's	blog	post	is	divided	into	four	parts.	In	the	first	part,	I	will	show	you	how	to	install	the	ZBar	library	(with	Python
bindings).	The	ZBar	library	is	used	along	with	OpenCV	to	scan	and	decode	barcodes	and	QR	codes.	Once	ZBar	and	OpenCV	are	properly	set	up,	I'll	show	you	how	to	scan	barcodes	and	QR	codes	on	the	same	image.	Starting	with	the	image,	we	get	the	necessary	practice.Next	step:	real-time	reading	of	barcodes	and	QR	codes	with	OpenCV	and	ZBar.
Finally,	I'll	show	you	how	to	implement	our	real-time	barcode	scanner	on	a	Raspberry	Pi.	Installing	ZBar	(with	python	bindings)	to	decode	barcodes	A	few	weeks	ago,	Satya	Mallick	of	the	LearnOpenCV	blog	posted	a	really	great	tutorial	on	using	the	ZBar	library	to	scan	barcodes.	The	instructions	for	installing	ZBar	in	today's	post	are	largely	based	on



his	instructions,	but	with	a	few	updates,	the	biggest	of	which	is	installing	the	python	zbar	links	themselves,	which	ensures	that	we	can:	Use	python	3	(official	zbar).	Python	bindings	only	support	Python	2.7)	Find	and	find	exactly	where	a	barcode	is	in	an	image.	Installing	the	required	software	is	a	simple	3-step	process.	Step	1:	Install	zbar	from	apt	or
brew	repository	Installing	ZBar	on	Ubuntu	or	Raspbian	Installing	ZBar	on	Ubuntu	can	be	done	using	the	following	command:	$	sudo	apt-get	install	libzbar0	Installing	ZBar	on	macOS	Installing	ZBar	on	macOS	using	brew	is	just	as	easy	(provided	that	you	have	Homebrew	installed:	$	brew	install	zbar	Step	2	(Optional):	Create	a	virtual	environment	and
install	OpenCV	Here	are	two	options:	Use	an	existing	virtual	environment	that	supports	OpenCV	(skip	this	step	and	go	to	step	3)	Or	create	a	new	isolated	virtual	environment	environment	that	includes	an	OpenCV	installation.	Virtual	environments	are	a	best	practice	in	Python	programming	and	I	strongly	encourage	you	to	use	them.	I	decided	to	create
a	new	isolated	Python	3	virtual	environment	and	followed	the	instructions	to	install	OpenCV	on	Ubuntu	(or	macOS,	depending	on	the	computer	,	which	you	are	using)	on	this	page	The	only	change	I	made	following	these	instructions	was	the	name	of	the	barcode	du	of	my	environment:	$	mkvirtualenv	barcode	-p	python3	Note.	If	you	already	have
OpenCV	installed	on	your	system,	you	can	skip	the	OpenCV	build	process	and	just	refer	to	the	cv2.so	link.	in	internet	packagesyour	new	virtual	Python	environment.	Step	3:	Install	pyzbar	Now	that	I	have	a	Python	3	virtual	environment	called	barcode	on	my	computer,	I	activated	the	barcode	environment	(you	may	have	a	different	name)	and	installed
pyzbar:	$	workon	barcode	$	pip	install	pyzbar	If	you	are	not	using	B	in	the	Virtual	Python	Environment	you	can	simply	do:	$	pip	install	pyzbar	If	you	are	trying	to	install	pyzbar	on	your	system	version	of	Python,	be	sure	to	also	use	the	sudo	command.	Decoding	Barcodes	and	QR	Codes	with	OpenCV	Single	Images	Before	reading	real-time	barcode	and
QR	code,	let's	start	with	a	single	image	scanner	to	get	our	feet	wet.	Open	a	new	file,	name	it	barcode_scanner_image.py	and	insert	the	following	code:	#	import	the	required	packages	from	pyzbar	import	pyzbar	import	argparse	import	cv2	#	create	an	argument	parser	and	parse	the	arguments	ap	=	argparse.ArgumentParser()	ap.add_argument(	"	-i",
"	--image",	required=True,	help="image	path")	args	=	vars(ap.parse_args())	In	lines	2-4	we	import	the	necessary	packages.	Both	pyzbar	and	cv2	(OpenCV)	must	be	installed	following	the	instructions	in	the	previous	section.	In	contrast,	argparse	is	part	of	the	Python	installation	and	is	responsible	for	parsing	command-line	arguments.	This	script	has
one	required	command-line	argument	(--image)	and	is	parsed	in	steps	7-10.	in	line.	At	the	end	of	this	section,	you'll	see	how	to	run	the	script	by	passing	a	command-line	argument	containing	the	path	to	the	input	image.	Now	we	take	the	input	image	and	run	pyzbar:	#	load	the	input	image	image	=	cv2.imread(args["image"])	#	find	the	barcodes	in	the
image	and	decode	each	one	barcode	=	pyzbar	.decode(image)	On	line	13,	load	the	input	image	by	its	path	(found	in	our	handy	args	dictionary).	From	there,	we	call	pyzbar.decode	to	find	and	decode	the	barcodes	in	the	image.16).	This	is	where	all	the	ZBar	magic	happens.	We're	not	done	yet	-	now	we	need	to	parse	the	information	contained	in	the
barcode	variable:	#	loop	over	the	recognized	barcodes	for	barcodes:	#	extract	the	position	of	the	barcode's	bounding	box	and	#	draw	the	bounding	box	that	encloses	the	barcode.	image	(x,y,w	,	v)	=	barcode.straight	cv2.rectangle(image,	(x,	y),	(x	+	w,	y	+	h),	(0,	0,	255),	2)	#	barcode	data	is	byte	object,	so	if	we	want	#	to	draw	an	output	image	on	it,
we	must	first	convert	it	to	a	string	barcodeData	=	barcode.data.decode("utf-8")	barcodeType	=	barcode.type	#	draw	barcode	data	and	barcode	type	in	image	text	=	"	{}	(	{})".	format(barcodeData,	barcodeType)	cv2.putText(image,	text,	(x,	y	-	10),	cv2.FONT_HERSHEY_SIMPLEX,	0.5,	(0	,	0,	255	),	2)	#	barcode	type	and	print	data	in	terminal	print("[
INFO]	Found	{}	barcode:	{}".	format(barcodeType,	barcodeData))	#	Show	the	output	image	cv2.imshow("	Image",	image)	cv2	.	waitKey(0)	From	line	19	Mr.	We	decode	the	recognized	barcodes.	In	this	loop,	we	continue:	Extract	the	(x,y)	coordinates	of	the	bounding	box	from	the	barcode.rect	object	(line	22),	which	allows	us	to	find	and	determine
where	the	current	barcode	is	in	the	input	image.	Draw	Draw	a	bounding	box	on	the	image	around	the	specified	barcode	(line	23).	Decode	the	barcode	to	the	string	"utf-8"	and	extract	the	barcode	type	(lines	27	and	28).	It	is	important	to	call	the	object's	.decode("utf-8")	function	to	convert	it	from	a	byte	array	to	a	string.	You	can	experiment	with
removing/commenting	it	out	to	see	what	happens.	I	leave	it	to	you	as	an	experiment.	Format	and	draw	the	barcode	data	and	barcode	type	on	the	image	(lines	31-33).	Finally,	enter	the	same	data	and	information	into	the	terminal	for	debugging	purposes	(line	36).	Let's	test	our	OpenCV	barcode	reader.	Use	the	Downloads	section	at	the	bottom	of	this
blog	post	to	download	the	code	and	sample	image.From	there,	open	a	terminal	and	run	this	command:	$	python	barcode_scanner_image.py	--image	barcode_example.png	[INFO]	QRCODE	found:	{"author":	"Adrian",	"site":	"PyImageSearch"}	[INFO]	Barcode	found	QRCODE	Code:	[INFO]	QRCODE	found	barcode:	PyImageSearch	[INFO]	CODE128
found	barcode:	AdrianRosebrock	As	you	can	see	in	the	terminal	all	four	barcodes	were	found	and	decoded	correctly!	See	Figure	1	for	a	processed	image	with	red	rectangles	and	overlaid	text	for	each	barcode	found	by	our	software.	Reading	barcodes	and	QR	codes	in	real	time	with	OpenCV	In	the	previous	section,	we	learned	how	to	create	a	single
image	barcode	scanner	in	Python	+	OpenCV.	Our	barcode	and	QR	code	scanner	worked	fine	-	but	the	question	is,	can	we	recognize	and	decode	barcodes	and	QR	codes	in	real	time?	To	find	out,	open	a	new	file,	name	it	barcode_scanner_video.py	and	paste	the	following	code:	#	Import	required	packages	from	imutils.video	import	VideoStream	from
pyzbar	import	pyzbar	import	argparse	import	datetime	import	imutils	import	time	import	cv2	#	build	argument	parser	and	parse	arguments	ap	=	argparse.ArgumentParser()	ap.add_argument("-o",	"--output",	type=str,	default="barcodes.csv",	help="Path	to	barcode	CSV	output	file")	args	=	vars	(ap.parse_args())	On	lines	2-8	we	import	our	required
packages.	If	you	remember	the	explanation	above,	you	should	recognize	pyzbar	,	argparse	and	cv2	at	this	point.	We	will	also	use	VideoStream	to	capture	video	frames	efficiently.	Learn	more	about	the	VideoStream	class	here.	And	if	you	don't	have	imutils	installed	on	your	system,	just	use	the	following	command:	$	pip	install	imutils	We	parse	the
optional	command	line	argument	--output	which	returns	the	path	to	a	comma	separated	value	(CSV).	This	file	contains	the	timestamp	and	content	of	each	detected	and	decoded	barcode	from	our	video	stream.	ifIf	no	argument	is	given,	the	csv	file	will	be	placed	in	our	current	working	directory	named	"barcodes.csv"	(lines	11-14).	From	there,	let's
initialize	the	video	stream	and	open	the	CSV	file:	#	Initialize	the	video	stream	and	let	the	camera	sensor	warm	up	print("[INFO]	Video	stream	in	progress...")	#	vs	=	VideoStream(src	=	0)	.start(	)	vs	=	VideoStream(	usePiCamera=True).start()	time.sleep(2.0)	#	open	the	output	csv	file	for	writing	and	initialize	#	the	set	of	barcodes	found	so	far	csv	=
open(args["output"]	,	"w	")	found	=	set	()	18.	and	in	line	19	we	initialize	and	start	our	VideoStream.	You	can:	use	a	USB	webcam	(comment	line	18	and	disclaimer	line	19)	or	if	you're	using	a	Raspberry	Pi	(like	me)	use	a	PiCamera	(comment	line	19	and	disclaimer	line	18).	I	selected	the	Raspberry	Pi	PiCamera	as	shown	in	the	next	section.	Then	we
pause	for	two	seconds	to	let	the	camera	warm	up	(line	20).	We	save	all	found	barcodes	on	the	disk	in	a	CSV	file	(but	we	do	not	save	duplicates).	This	is	intended	to	be	a	(trivial)	example	of	capturing	barcodes.	After	recognizing	and	reading	the	barcode,	you	can	of	course	do	whatever	you	want,	e.g.	B.:	Save	it	to	the	SQL	database.	Send	it	to	the	server.
Upload	it	to	the	cloud.	Send	an	email	or	SMS	We	will	only	use	a	CSV	file	as	an	example.	You	can	update	the	code	to	contain	any	statement.	We	open	the	csv	file	for	writing	on	line	24.	If	you	change	the	code	you	want	to	add	to	the	file,	you	can	simply	change	the	second	parameter	from	"w"	to	"a"	(but	you	need	to	search	the	file	for	duplicates	in	a
different	way).	We	also	initialize	the	set	of	found	barcodes.	This	set	contains	unique	barcodes	while	eliminating	duplicates.	Let's	start	capturing	and	processing	frames:	#	over	frames	from	the	video	stream	while	True:	#	takes	a	frame	from	the	threaded	video	stream	and	resizes	it	to	#	a	maximum	frame	width	of	400	pixelsvs.read()	frame	=
imutils.resize(frame,	width=400)	#	Find	the	barcodes	in	the	frame	and	decode	each	one	barcodes	=	pyzbar.decode(frame)	On	line	28	we	start	our	loop	and	continue	capturing	and	resizing	the	frame	from	our	video	stream	(lines	31	and	32).	From	there	we	call	pyzbar.decode	to	detect	and	decode	all	QR+	barcodes	in	the	frame.	Let's	start	to	view
recognized	barcodes:	#	cycle	through	recognized	barcodes	for	barcode	in	barcodes:	#	extract	barcode	frame	position	and	draw	#	frame	around	barcode	in	image	(x,y,w,h)	=	barcode.rect	cv2.rectangle	(frame,	(x,	y),	(x+w,	y+h),	(0,	0,	255),	2)	#	Barcode	data	is	bytes	so	if	we	want	to	draw	this	#	In	our	output	image	we	need	to	convert	it	first	to	string
barcodeData	=	barcode.data.decode("utf-8")	barcodeType	=	barcode.type	#	Draw	barcode	data	and	barcode	type	on	image	text	=	"{}	(	{	}	)".format(barcodeData,	barcodeType)	cv2.putText(frame,	text,	(x,	y	-	10),	cv2.FONT_HERSHEY_SIMPLEX,	0.5,	(0,	0,	255),	2)	#	if	barcode	text	is	currently	missing	Write	from	our	csv	file	#	timestamp	+	barcode	to
disk	and	update	the	set	if	no	barcode	is	found:	csv.write("{},{}".format(	datetime.datetime.now(),	bar	codeData))	csv	.flush()	found.add(barcod	eData)	This	loop	should	look	familiar	if	you've	read	the	previous	article.	our	section.	In	fact,	lines	38-52	are	identical	to	lines	in	the	frame-by-frame	script.	For	a	detailed	discussion	of	this	block	of	code,	see
Recognize	and	scan	single	image	barcodes.	Lines	56-60	are	new.	In	these	lines	we	check	if	we	found	a	unique	(previously	not	found)	barcode	(line	56).	If	so,	we	save	the	timestamp	and	data	to	a	CSV	file	(lines	57-59).	We	also	add	barcodeData	to	the	found	set	to	easily	handle	duplicates.	In	the	remaining	lines	of	the	realtime	barcode	scanner	script,	we
show	the	frame,	check	if	the	exit	button	is	pressed	and	clear:	#	show	the	output	frameScanner",	frame)	key	=	cv2.waitKey(1)	&	0xFF	#	if	the	"q"	key	was	pressed,	break	the	loop	if	key	==	ord("q"):	break	#	close	the	output	CSV	file,	do	a	bit	of	cleanup	print(	"[INFO]	clean	up...")	csv.close()	cv2.destroyAllWindows()	vs.stop()	We	display	the	output
frame	on	line	63.	Then	we	check	on	lines	64-68	that	the	key	and	if	"q"	is	pressed	,	we	take	s	out	of	the	main	execution	loop.	Finally,	we	clean	up	on	lines	72-74	by	creating	a	barcode	and	QR	code	scanner	on	the	Raspberry	Pi	Figure	2.	My	Raspberry	Pi	-	Barcode	Scanner	project	consists	of	Raspberry	Pi	,	PiCamera,	7"	touchscreen	and	battery	What
makes	a	barcode	scanner	fun	when	I'm	tied	to	my	desk?	I	decided	I	needed	a	barcode	scanner	with	a	Pi,	a	touchscreen	and	batteries.	Figure	2	is	my	setup,	just	what	I	recently	used	for	my	mobile	deep	learning	project	Pokedex	Peripherals,	Listed	Products	and	Links:	Building	a	system	is	very	easy	here,	and	I've	created	detailed	instructions	in	this	blog
post.	Once	your	ZBar	mobile	barcode	scanner	is	ready,	download	the	code	associated	with	this	blog	post	from	the	Downloads	section	of	this	blog	post.	Then	open	the	Pi	terminal	and	run	the	app	with	the	following	command	(you'll	need	a	keyboard/mouse	for	this	step,	but	you	can	disconnect	afterwards	and	let	the	app	run):	$	python
barcode_scanner_video.py	[INFO]	Starting	video	stream...	Now	you're	ready	display	the	barcodes	to	the	camera,	and	when	you're	done	you	can	open	the	barcodes.csv	file	(or	if	you	prefer,	you	can	tail-f	barcodes.csv	to	launch	a	separate	terminal	to	view	the	data	when	the	CSV	file	is	published).	The	first	QR	code	I	tried	shows	up	on	a	black	background
-	ZBar	recognizes	it	very	easily:	Figure	3:	The	QR	code	with	the	code	"PyImageSearch"	is	recognized	by	our	Python	+	ZBar	application.	walked	into	my	kitchen	with	a	pi,	screen	andPackage	in	hand	and	another	QR	code	found:	Figure	4.	My	site	"	has	a	QR	code	and	is	recognized	by	ZBar	and	Python	on	my	Raspberry	Pi.	Good	luck!	It	even	works	from
multiple	angles.	Now	let's	try	a	QR	code	containing	a	JSON	data	block:	Figure	5.	OpenCV	Barcode	and	QR	Scanner	with	ZBar	easily	decodes	QR	image.	I	hosted	the	project	on	my	Raspberry	Pi	so	I	could	take	it	with	me.	Not	suitable	for	my	OpenCV+ZBar+Python	barcode	scanner	project!	Finally,	I	tried	a	traditional	1D	barcode:	Figure	6:	ZBar
combined	with	OpenCV	and	Python	produces	a	great	Raspberry	Pi	barcode	design.	My	name	"Adrian	Rosebrock"	is	encoded	in	the	CODE128	barcode.	1D	barcodes	are	a	little	tricky	for	the	system,	especially	with	the	PiCamera	which	doesn't	support	autofocus.	However,	I	also	managed	to	successfully	detect	and	decode	this	barcode.	You	might	have
better	luck	with	a	USB	webcam	like	the	Logitech	C920,	which	has	excellent	autofocus.	You	can	also	change	the	factory	focus	on	your	PiCamera	using	the	method	described	by	Jeff	Gerling	on	his	blog.	It's	a	wrap!	If	you	want	to	read	more	blog	posts	about	barcodes	on	my	site,	check	out	the	posts	tagged	"barcode".	Course	Details:	57	lessons	in	total	➢
Over	60	hours	of	on-demand	instructional	videos	➢	Last	updated:	November	2022	I'm	sure	that	if	you	had	the	right	teacher,	you	could	master	computer	vision	and	deep	learning.	Do	you	think	learning	computer	vision	and	deep	learning	should	be	time-consuming,	overwhelming	and	difficult?	Or	should	it	involve	complex	math	and	equations?	Or	is	a
degree	in	computer	science	required?	No	it	is	not.	All	you	need	to	learn	computer	vision	and	deep	learning	is	someone	to	explain	everything	to	you	in	a	simple	and	intuitive	way.	And	that's	exactly	what	I'm	doing.	My	mission	is	changeand	how	complex	AI	topics	are	taught.	If	you're	serious	about	learning	about	computer	vision,	your	next	stop	should
be	PyImageSearch	University,	the	most	comprehensive	online	course	on	computer	vision,	deep	learning,	and	OpenCV.	Learn	how	to	use	computer	vision	effectively	and	confidently	in	your	work,	research,	and	projects.	Join	me	in	learning	about	computer	vision.	At	PyImageSearch	University,	you'll	find:	■	Over	57	courses	in	computer	vision
fundamentals,	deep	learning,	and	OpenCV	topics;	■	57+	certificates	of	completion;	■	Over	60	hours	of	on-demand	video	■	New	courses	released	regularly	to	keep	you	up	to	date.	Best	Practices	■	Preloaded	customized	Jupyter	notebooks	in	Google	Colab	■	Run	all	code	examples	in	a	web	browser	■	Runs	on	Windows,	macOS,	and	Linux	(no	dev
environment	setup	required!)	■	Access	to	centralized	code	repositories	for	all	500+	PyImageSearch	tutorials	■	Easy	one-click	download	of	code,	datasets,	pre-trained	models,	etc.	â	Access	on	mobile	devices,	laptops,	desktops,	etc.	Click	here	to	join	PyImageSearch	University	Summary	In	today's	blog	article,	you	learned	how	create	an	OpenCV
barcode	and	QR	code	scanner.	For	this	we	used	the	ZBar	library.	After	installing	the	ZBar	library,	we	created	two	Python	scripts	on	our	system:	the	first	one	for	scanning	barcodes	and	QR	codes	in	a	single	image,	and	the	second	one	for	reading	barcodes	and	QR	codes	in	real	time.	In	both	cases,	we	used	OpenCV	to	make	the	process	easier.	for
creating	our	barcode/QR	scanner.	Finally,	we	ended	today's	blog	post	by	implementing	a	barcode	reader	on	the	Raspberry	Pi.	The	barcode	scanner	is	fast	enough	to	run	real-time	on	a	Raspberry	Pi	without	issue.	Feel	free	to	use	this	barcode	and	QR	code	scanner	feature	in	your	projects!	And	if	you	make	something	fun	and	interesting	with	it,	be	sure
to	share	your	project	in	the	comments.	Hope	you	enjoyed	today's	post.	See	you	next	week.	Way	downwill	be	notified	when	future	blog	posts	are	published	here	on	PyImageSearch,	remember	to	enter	your	email	address	in	the	form	below!	Enter	your	email	address	below	to	receive	your	zip	code	and	FREE	17-page	guide	to	Computer	Vision,	OpenCV
and	Deep	Learning	resources.	Inside	you	will	find	my	own	curated	tutorials,	books,	courses	and	libraries	to	help	you	master	your	CV	and	DL!	DL!




